viernes, 2 de diciembre de 2011

carga formal

En química, una carga formal (FC) es una carga parcial de un átomo en una molécula, asignada al asumir que los electrones en un enlace químico se comparten por igual entre los átomos, sin consideraciones de electronegatividad relativa[1] o, en otra definición, la carga que quedaría en un átomo cuando todos los ligandos son removidos homolíticamente.[2]
La carga formal de cualquier átomo en una molécula puede ser calculada por la siguiente ecuación: carga formal = número de electrones de valencia del átomo aislado - electrones de pares libres del átomo en la molécula - la mitad del número total de electrones que participan en enlaces covalentes con este átomo en la molécula.


REFERENCIAS:

  1. Lewis Structure Representation of Free Radicals Similar to ClO Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360. Abstract
  2. Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts Parkin, Gerard J. Chem. Educ. 2006, 83, 791. Abstract

Nomenclatura de amidas y aminas

Aminas
Generalidades.- Las aminas se concideran como derivados del amoniaco y resultan de la sustitución de los hidrógenos de la molécula por los radicales alquilo. Según se sutituyan uno, dos, tres o más hidrógenos, las amidas serán primarias, secundarias o terciarias, respectivamente. Se designan poniendo la terminación amina, característica de la serie al nombre de los grupos alquilo unidos al nitrógeno:
CH3-NH2 metilamina
(CH3)2NH dimetilamina
(CH3)2NC2H5 dimetiletilamina
Las aminas son simples cuando los grupos alquiloson iguales y mixtas si estos son diferentes.
Nomenclatura.- La sustitución se uno o más átomos de hidrógeno del amoniaco por radicales orgánicos da una serie de compuestos llamados aminas. Las aminas se clasificasn de acuerdo con el número de átomos de hidrógeno del amoniaco que se sustituyen por grupos orgánicos, los que tienen un solo grupo se llaman aminas primarias, los que tieien dos se llaman aminas secundaria y así sucesivamente. Ejemplo:
H H R´
| | |
H-N-H R-N-H R-N-H
| | |
(NH3) (R-NH2) (R2-NH)
Amoniáco Primaria Secundaria
Cunado se usan los prefijos de, tri, se indica si es una amina secundaria y terciaria, respectivamente, con grupos o radicales iguales. Cuando se trata de grupos diferentes a estos se nombran empezando por los más pequeños y terminando con el mayor al que se le agrega la terminación amina. Algunas veces se indica el prefijo amino indicando la posición, más el nombre del hidrocarburo.
Ejemplos:
CompuestoNombre
CH3-NH2Metilamina o aminometano
CH3-NH-CH3Dimetilamina ó metilaminometano
CH3-CH2-NH-CH2-CH2-CH3Etil-propil-amina ó etil-amino-propano


CompuestoNombre
CH3-N-CH3
|
CH3
Trimetilamina ó dimetilaminometano
CH3
|
N-CH2-CH2-CH3
|
CH2-CH3
Metil-etil-propilamina ó metil-etil-aminopropano

Obtención.- Se obtiene de una mezcla de aminas primarias, secundarias y terciarias por el método de Hoffman, consiste en calentar los halogenurios de alquilo con una solución etanólica de amoniaco en tubo cerrado:
R-Cl+HNH2à ClH+R-NH2
RNH2+RCl à ClH+(R)2NH
(R)2NH+RClà ClH+R3N
R3N+RClà [R4N]+Cl- sal de amonio cuaternaria
Por destilación fraccionada en una solución de KOH se consigue separar las tres aminas, gracias a la diferencia que existe entre sus puntos de ebullición, y la sal de amonio permanece inalterada. Las aminas priomarias se pueden preparar también reduciendo con hidrógeno (sodio+alcohol) los nitrilos:
CH3-C≡N+2H2 à C2H5-NH2 etilamina
Propiedades y diferenciación.- En las aminas, los términos más bajos son gaseosos y solubles en agua, los intermedios son líquidos y los superiores son sólidos. La solubilidad en agua disminuye según aumenta el peso molecular. Los primeros terminos son volátiles y de olor amoniacal.
Todas las aminas son bases, incluso más fuertes que el amoniaco:
R-NH2+H2O à RNH3-+OH-
Reaccionan con los ácidos, formando sales de amonio:
CH3-NH2+ClH à [CH3-NH3]+Cl-
Reaccionan con los halogenuros de alquilo, dando halogenuros de amonio aquilo sustituidos. Los tres tipos de aminas se diferencian principalmente por su
comportamiento con el ácido nitroso, las primarias suelen formar alcohol y desprender nitrógeno, las secundarias forman nitrosamidas y las terciarias no reaccionan con el ácido nitroso.
El grupo amino es constituyente principal de las
proteínas y varias aminas tienen olor a pescado.
 Amidas
Generalidades.- Las amidas responden a la fórmula general y se separan deshidratando las sales amónicas de los ácidos grasos:
R-CO-O-NH4 à R-CO-NH2+H2O
Se forman igualmente en la reacción de los cloruros de ácido con el amoniaco y en la hidratación de los nitrilos. Se denominan en la función del ácido de que se derivan: formamida (H-CO-NH2), acetamida (CH3-CO-NH2), etc.
Nomenclatura.- Las amidas se concideran como el producto de la sustitución del hidroxilo del grupo funcional carboxilo por un grupo amino; su fórmula general es: R-CONH2.
Se nombran cambiando la terminación ico del ácido por la palabra amida. Ejemplo:
CompuestoNombre
CH3-CONH2Etanoamida ó acetamida
H-CONH2Metanoamida ó formamida

Si la amida contiene us sustituyente en el nitrógeno, éste debe indicarse como prefijo. Ejemplo:
CH3-CO-NH-CH3 N-metil acetamida
C2H5-CO-NH-C2H5N-etil propanamida
Propiedades.- Las amidas se presentan en forma de sólidos cristalizados, y la determinaciónde su punto de fusión puede servir para caracterizar los ácidos de los que se derivan. Son solubles en el alcoholy en el éter, pero sólo si los primeros de la serie son solubles en agua. La amidas constituyen el término intermedio de hidratación entre los nitrilos (R-C≡N) y las sales amónicas de los ácidos (R-CO-O-NH4): R-C≡Nà R-CO-NH2à R-CO2NH4
Se hidratan por acción de los ácidos
minerales o de los álcalis diluidos y se transforman en ácidos grasos. En cambio, los deshidratantes conducen a la formación de nitrilos. Son, al mismo tiempo, bases y ácidos muy débiles, lo que hace que formen sales muy hidrolizables con el ácido clorhídrico. Pueden engendrar además derivados sódicos tales como: R-CO-NH-Na
Esta propiedad, característica de ciertos cuerpos, que consiste en
poder foemar en distintas condiciones el catión o el anión de una sal, constituye el carácter anfótero de los mismos.
Por acción del hipoclorito o del hipobromito de sodio, las amidas R-CO-NH2se transforman en aminas R-NH2. El átomo de carbono de la amida se elimina en forma de anhídrido carbónico
.


REFRENCIAS:
Larousse Enciclopedia metódica en color, España 1988 Tomo 6, 2ª. Edición de Ramón García-Pelayo y Gross
Fundamentos de Química 2, México 1993 Quinta reimpresión Editorial Publicaciones Cultural de Glafira Angeles Ocampo, Froylan Fabia Gutiérrez, José manuel Juárez Calderón, Raúl Monsalvo ázquez y Víctor Manuel Ramírez Regaldo.
Instituto politecnico nacional
Centro de estudios cientificos y tecnologicos no. 9

jueves, 1 de diciembre de 2011

Nomenclatura de acidos carboxilicos

Los ácidos carboxílicos se nombran con la ayuda de la terminación –oico o –ico que se une al nombre del hidrocarburo de referencia:
Ejemplo
CH3-CH2-CH3 propano CH3-CH2-COOH Acido propanoico (propano + oico)

Los nombres de los ácidos carboxílicos se designan según la fuente natural de la que inicialmente se aislaron. Se clasificaron así:
Nombres y fuentes naturales de los ácidos carboxílicos
EstructuraNombre IUPACNombre comúnFuente natural
HCOOHÁcido metanoicoÁcido fórmicoDestilación destructiva de hormigas (formica en latín)
CH3COOHÁcido etanoicoÁcido acéticoFermentación del vino (vinagre)
CH3CH2COOHÁcido propanoicoÁcido propiónicoFermentación de lácteos (pion en griego)
CH3CH2CH2COOHÁcido butanoicoÁcido butíricoMantequilla (butyrum, en latín)
CH3(CH2)3COOHÁcido pentanoicoÁcido valéricoRaíz de la valeriana officinalis
CH3(CH2)4COOHÁcido hexanoicoÁcido caproicograsa de cabra

En el sistema IUPAC los nombres de los ácidos carboxílicos se forman reemplazando la terminación “o” de los alcanos por “oico”, y anteponiendo la palabra ácido.
El esqueleto de los ácidos alcanoicos se enumera asignando el N° 1 al carbono carboxílico y continuando por la cadena más larga que incluya el grupo COOH.

Ejemplos de ácidos carboxílicos

Ejemplo 1
HOCH3-CH3-CH=CH-CH(CH3-CH=CH3)-CHBr-COOH

En este compuesto aparte del grupo funcional COOH, hay una función alcohol, pero de acuerdo a su importancia y relevancia el grupo COOH es el principal; por lo tanto el grupo alcohol se lo nombra como sustituyente. Por lo tanto el nombre es Acido 3-alil-2-bromo-7-hidroxi-4-hexenoico.
Ejemplo 2
Compuestos con dos grupos COOH
La IUPAC nombra los ácidos carboxílicos reemplazando la terminación -ano del alcano con igual número de carbonos por -oico.


Cuando el ácido tiene sustituyentes, se numera la cadena de mayor longitud dando el localizador más bajo al carbono del grupo ácido. Los ácidos carboxílicos son prioritarios frente a otros grupos, que pasan a nombrarse como sustituyentes.


Los ácidos carboxílicos también son prioritarios frente a alquenos y alquinos. Moléculas con dos grupos ácido se nombran con la terminación -dioico.


Cuando el grupo ácido va unido a un anillo, se toma el ciclo como cadena principal y se termina en
-carboxílico.

La IUPAC nombra los ácidos carboxílicos reemplazando la terminación -ano del alcano con igual número de carbonos por -oico.


Cuando el ácido tiene sustituyentes, se numera la cadena de mayor longitud dando el localizador más bajo al carbono del grupo ácido. Los ácidos carboxílicos son prioritarios frente a otros grupos, que pasan a nombrarse como sustituyentes.

Los ácidos carboxílicos también son prioritarios frente a alquenos y alquinos. Moléculas con dos grupos ácido se nombran con la terminación -dioico.


Cuando el grupo ácido va unido a un anillo, se toma el ciclo como cadena principal y se termina en
-carboxílico


FORMULANOMBRE IUPACNOMBRE TRIVIAL
HOOC-COOHAc. EtanodioicoÁcido oxálico
HOOC-CH2-COOHAc. PropanodioicoÁcido malónico
HOOC-(CH2)2-COOHAc. ButanodioicoÁcido succínico

Referencias:
  1. Wilhelm Riemenschneider “Carboxylic Acids, Aliphatic” in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi 10.1002/14356007.a05_235 10.1002/14356007.a05_235.
  2. Vollhardt, K. Peter. Química Orgánica. 3ra edición. Año 2000. Omega. Madrid. pp. 849-850. ISBN 84-282-1172-8.

Nomenclatura de aldehidos y cetonas

Nomenclatura de Aldehídos y Cetonas Imprimir E-Mail
Los aldehídos se nombran reemplazando la terminación -ano del alcano correspondiente por -al. No es necesario especificar la posición del grupo aldehído, puesto que ocupa el extremo de la cadena (localizador 1).
Cuando la cadena contiene dos funciones aldehído se emplea el sufijo -dial.

El grupo -CHO unido a un ciclo se llama -carbaldehído. La numeración del ciclo se realiza dando localizador 1 al carbono del ciclo que contiene el grupo aldehído.


Algunos nombres comunes de aldehídos aceptados por la IUPAC son:


Las cetonas se nombran sustituyendo la terminación -ano del alcano con igual longitud de cadena por -ona. Se toma como cadena principal la de mayor longitud que contiene el grupo carbonilo y se numera para que éste tome el localizador más bajo.


Existe un segundo tipo de nomenclatura para las cetonas, que consiste en nombrar las cadenas como sustituyentes, ordenándolas alfabéticamente y terminando el nombre con la palabra cetona.




Nomenclatura de Aldehídos y Cetonas Imprimir E-Mail
Los aldehídos se nombran reemplazando la terminación -ano del alcano correspondiente por -al. No es necesario especificar la posición del grupo aldehído, puesto que ocupa el extremo de la cadena (localizador 1).
Cuando la cadena contiene dos funciones aldehído se emplea el sufijo -dial.

El grupo -CHO unido a un ciclo se llama -carbaldehído. La numeración del ciclo se realiza dando localizador 1 al carbono del ciclo que contiene el grupo aldehído.

Algunos nombres comunes de aldehídos aceptados por la IUPAC son:

Las cetonas se nombran sustituyendo la terminación -ano del alcano con igual longitud de cadena por -ona. Se toma como cadena principal la de mayor longitud que contiene el grupo carbonilo y se numera para que éste tome el localizador más bajo.


Existe un segundo tipo de nomenclatura para las cetonas, que consiste en nombrar las cadenas como sustituyentes, ordenándolas alfabéticamente y terminando el nombre con la palabra cetona.

Aldehídos y cetonas se caracterizan por tener el grupo carbonilo
La fórmula general de los aldehídos es
La fórmula general de las cetonas es

 
Aldehídos
El sistema de nomenclatura corriente consiste en emplear el nombre del alcano correspondiente terminado en -al.
Cuando el grupo CHO es sustituyente se utiliza el prefijo formil-.
También se utiliza el prefijo formil- cuando hay tres o más funciones aldehídos sobre el mismo compuesto .En esos casos se puede utilizar otro sistema de nomenclatura que consiste en dar el nombre de carbaldehído a los grupos CHO (los carbonos de esos CHO no se numeran, se considera que no forman parte de la cadena).Este último sistema es el idóneo para compuestos con grupos CHO unidos directamente a ciclos.
Cetonas
Para nombrar los cetonas tenemos dos alternativas:
  1. El nombre del hidrocarburo del que procede terminado en -ona .Como sustituyente debe emplearse el prefijo oxo-.
  2. Citar los dos radicales que están unidos al grupo carbonilo por orden alfabético y a continuación la palabra cetona.


 
Los compuestos carbonílicos presentan puntos de ebullición más bajos que los alcoholes de su mismo peso molecular.No hay grandes diferencias entre los puntos de ebullición de aldehídos y cetonas de igual peso molecular.
Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad.

REFRENCIAS:

  1. Wilhelm Riemenschneider “Carboxylic Acids, Aliphatic” in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi 10.1002/14356007.a05_235 10.1002/14356007.a05_235.
  2. Vollhardt, K. Peter. Química Orgánica. 3ra edición. Año 2000. Omega. Madrid. pp. 849-850. ISBN 84-282-1172-8.

Nomenclatura eteres

Regla 1. Los éteres pueden nombrarse como alcoxi derivados de alcanos (nomenclatura IUPAC sustitutiva). Se toma como cadena principal la de mayor longitud y se nombra el alcóxido como un sustituyente.

Regla 2. La nomenclatura funcional (IUPAC) nombra los éteres como derivados de dos grupos alquilo, ordenados alfabéticamente, terminando el nombre en la palabra éter.

Regla 3. Los éteres cíclicos se forman sustituyendo un -CH2- por -O- en un ciclo. La numeración comienza en el oxígeno y se nombran con el prefio oxa- seguido del nombre del ciclo.

REFERNCIAS:

  1. Wilhelm Riemenschneider “Carboxylic Acids, Aliphatic” in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi 10.1002/14356007.a05_235 10.1002/14356007.a05_235.
  2. Vollhardt, K. Peter. Química Orgánica. 3ra edición. Año 2000. Omega. Madrid. pp. 849-850. ISBN 84-282-1172-8.

En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios:

ROH + HOR' → ROR' + H2O
Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.
RO- + R'X → ROR' + X-
Al igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a ser hidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos.
Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas.
El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes.
Los dos pares de electrones no enlazantes del oxígeno pueden interaccionar con otros átomos, actuando de esta forma los éteres como ligandos, formando complejos. Un ejemplo importante es el de los éteres corona, que pueden interaccionar selectivamente con cationes de elementos alcalinos o, en menor medida, alcalinotérreos.

Regla de markornikov

En química, la regla de Markovnikov es una observación respecto a las reacción de adición electrófila. Fue formulada por el químico ruso Vladimir Vasilevich Markovnikov en 1870.[1] [2] En una reacción química encontrada particularmente en química orgánica, la regla establece que, con la adición de un reactivo asimétrico del tipo H-X a un alqueno o alquino, el átomo de hidrógeno lábil se une al átomo de carbono del doble o triple enlace con el mayor número de átomos de hidrógeno, y el grupo halogenuro (X) se une al átomo de carbono del doble o triple enlace con el menor número de átomos de hidrógeno.[3]

La regla de Markovnikov está ilustrada por la reacción del propeno con HBr, se indica el mayor producto obtenido
Lo mismo es verdad cuando un alqueno reacciona con agua en una reacción catalizada por ácidos minerales, para producir alcoholes. El grupo hidroxilo (OH) se une al átomo de carbono que tiene el mayor número de enlaces carbono-carbono, mientras que el átomo de hidrógeno se une al átomo de carbono en el otro extremo del enlace doble, el que tiene el mayor número de enlaces carbono-hidrógeno.
La base química para la regla de Markovnikov es la formación del carbocatión más estable, durante el proceso de adición. La adición del átomo de hidrógeno a uno de los átomos de carbono origina una carga formal positiva en el otro átomo de carbono, formando un carbocatión intermediario. Mientras más sustituido está un carbocatión (más enlaces tiene a otro átomos de carbono u otros sustituyentes electrodonantes), más estable es, debido al efecto inductivo, hiperconjugación e impedimento estérico. El producto principal de la reacción de adición será el que tenga el intermediario más estable. En consecuencia, el producto principal de la adición del HX (donde X es algún átomo o grupo más electronegativo que el átomo de hidrógeno) a un alqueno tiene el átomo de hidrógeno en la posición menos sustituida y el grupo X en la posición más sustituidas. Es importante notar que, sin embargo, también se formará el carbocatión menos estable, aunque en menor grado, y procederá a formar el producto minoritario con la disposición de átomos en forma opuesta.
Como una mnemotécnica, se puede sumarizar en "el rico se hace más rico y el pobre se hace más pobre": un átomo de carbono rico en sustituyentes ganará más sustituyentes, y el átomo de carbono con más átomos de hidrógeno unidos ganará más átomos de hidrógeno.


El protón siempre ataca al carbono menos sustituido del alqueno, para generar el carbocatión más estable. Este enunciado se conoce como regla de Markovnikov y es aplicable a todas las adiciones electrófilas en las que se generan carbocationes.
 
Formación del carbocatión más estable
La regla de Markovnikov se basa en la estabilidad del carbocatión formado. Cuando el protón se une al carbono menos sustituido se obtiene el carbocatión en la posición más sustituida y por tanto más estable.
El carbocatión primario por su escasa estabilidad no llega a formarse.  Se dice que la reacción es regioselectiva Markovnikov por ir el hidrógeno al carbono menos sustuituido del alqueno.

REFERENCIAS:
  1. W. Markovnikoff (1870). «Ueber die Abhängigkeit der verschiedenen Vertretbarkeit des Radicalwasserstoffs in den isomeren Buttersäuren». Annalen der Pharmacie 153 (1):  pp. 228–259. doi:10.1002/jlac.18701530204. 
  2. a b Was Markovnikov’s Rule an Inspired Guess? Peter Hughes 1152 Journal of Chemical Education • Vol. 83 No. 8 August 2006
  3. Additions to Alkenes: Regiochemistry
  4. sistema catalítico basado en la reacción in-situ del rutenoceno con ligantes de Cp y naftaleno y un segundo ligante voluminoso de piridina
  5. Highly Active in Situ Catalysts for Anti-Markovnikov Hydration of Terminal AlkynesAurélie Labonne, Thomas Kribber, and Lukas Hintermann Org. Lett.; 2006; 8(25) pp 5853 - 5856; (Letter) doi 10.1021/ol062455k
  6. TiCl4 Induced Anti-Markovnikov Rearrangement Mugio Nishizawa, Yumiko Asai, and Hiroshi Imagawa Org. Lett.; 2006; 8(25) pp 5793 - 5796; (Letter) doi 10.1021/ol062337x.

Reacciones radicales

Radical (química)

En química, un radical (antes referido como radical libre) es una especie química (orgánica o inorgánica), en general extremadamente inestable y, por tanto, con gran poder reactivo por poseer un electrón desapareado.[1] No se debe confundir con un grupo sustituyente, como un grupo alquilo, que son partes de una molécula, sin existencia aislada.
Poseen existencia independiente aunque tengan vidas medias muy breves, por lo que se pueden sintetizar en el laboratorio, se pueden formar en la atmósfera por radiación, y también se forman en los organismos vivos (incluido el cuerpo humano) por el contacto con el oxígeno y actúan alterando las membranas celulares y atacando el material genético de las células, como el ADN.
Los radicales tienen una configuración electrónica de capas abiertas por lo que llevan al menos un electrón desapareado que es muy susceptible de crear un enlace con otro átomo o átomos de una molécula. Desempeñan una función importante en la combustión, en la polimerización, en la química atmosférica, dentro de las células y en otros procesos químicos.
Para escribir las ecuaciones químicas, los radicales frecuentemente se escriben poniendo un punto (que indica el electrón impar) situado inmediatamente a la derecha del símbolo atómico o de la fórmula molecular como:

REFERNCIAS:

  1. Strategic Applications of Named Reactions in Organic Synthesis Laszlo Kurti, Barbara Czako Academic Press (March 4, 2005) ISBN 0-12-429785-4
  2. Analysis of the reactions used for the preparation of drug candidate molecules John S. Carey, David Laffan, Colin Thomson and Mike T. Williams Org. Biomol. Chem., 2006, 4, 2337 - 2347, doi 10.1039/b602413k
  3. Is This Reaction a Substitution, Oxidation-Reduction, or Transfer? / N.S.Imyanitov. J. Chem. Educ. 1993, 70(1), 14 – 16.

electrofilo y nucleofilo

Un electrófilo es un reactivo químico atraído hacia zonas ricas en electrones que participa en una reacción química aceptando un par de electrones formando un enlace con un nucleófilo. Ya que los electrófilos aceptan electrones, ellos son ácidos de Lewis (ver teorías de reacciones ácido-base). La mayoría de los electrófilos están cargados positivamente, tienen un átomo que lleva una carga positiva parcial o bien no posee un octeto de electrones.
Los electrófilos atacan la zona de mayor densidad electrónica del nucleófilo. Los electrófilos encontrados frecuentemente en los procesos de síntesis orgánica suelen ser cationes (ej: H+ y NO+), moléculas neutras polarizadas (ej: cloruro de hidrógeno, haloalcanos, ácidos halógenos y grupos carbonilos), moléculas neutras polarizables (ej: Cl2 y Br2), agentes oxidantes (ej: peroxiácidos orgánicos), especies químicas que no satisfacen la regla del octeto (ej: carbenos y radicales libres), y algunos ácidos de Lewis (ej: BH3 y DIBAL).

En química un nucleófilo (amante de núcleos) es una especie que reacciona cediendo un par de electrones libres a otra especie (el electrófilo), combinándose y enlazándose covalentemente con ella. Un nucleófilo, concepto cinético, es también por definición una base de Lewis, concepto termodinámico. Un nucleófilo puede ser un anión o una molécula neutra con un par de electrones libres.

REFERENCIAS:
  1. Strategic Applications of Named Reactions in Organic Synthesis Laszlo Kurti, Barbara Czako Academic Press (March 4, 2005) ISBN 0-12-429785-4
  2. Analysis of the reactions used for the preparation of drug candidate molecules John S. Carey, David Laffan, Colin Thomson and Mike T. Williams Org. Biomol. Chem., 2006, 4, 2337 - 2347, doi 10.1039/b602413k
  3. Is This Reaction a Substitution, Oxidation-Reduction, or Transfer? / N.S.Imyanitov. J. Chem. Educ. 1993, 70(1), 14 – 16.

Adicion nucleofilica

En química orgánica, una adición nucléofila es una reacción de adición donde en un compuesto químico un enlace π es eliminado mediante la adición de un nucleófilo, creándose dos nuevos enlaces covalentes (uno en cada extremo de lo que era el enlace múltiple).
Las reacciones de adición están limitadas a compuestos químicos que tengan átomos unidos por enlaces múltiple:

Contenido

 [ocultar

 Adición nucleófila a dobles enlaces carbono-heteroátomo

Las reacciones de adición de un nucleófilo sobre enlaces dobles carbono-heteroátomo tales como el C=O o el C=N muestran una amplia variedad. Estos enlaces son polares (existe una diferencia de electronegatividad significativa entre los dos átomos que los forman), de tal forma que el carbono soporta una carga parcial positiva. Esto hace que este átomo sea el objetivo del nucleófilo.
Nu- + RR'C=O → NuRR'C-O-   (Ataque nucleófilo)
NuRR'C-O- + H+ → NuRR'C-OH   (Protonación)
Este tipo de reacción también es conocida como adición nucleófila 1,2 o adición 1,2. Respecto a la estereoquímica de este tipo de ataque nucleófilo el producto de la reacción, en ausencia de quiralidad previa en la molécula, es el racemato, salvo cuando se tiene un centro quiral en α al carbono nucleófilo y en sistemas cíclicos o policíclicos donde tenemos caras diferenciadas, produciéndose en general en estos casos el ataque del nucleófilo mayoritariamente por la cara menos impedida (sin demasiada utilidad sintética aunque sirve para predecir el producto mayoritario).
Las reacciones de adición de este tipo son numerosas.

]Sobre carbonilos

Con un compuesto carbonílico como electrófilo, el nucleófilo puede, por ejemplo, ser:
R2C=O + H2O → R2C(OH)2
R2C=O + 2R'OH → R2C(OR')2 + H2O
R2C=O + H- → R2CH-O-   (Adición)
R2CH-O- + H+ → R2CH-OH   (Neutralización)
R2C=O + R'NH2 → R2C=NR' + H2O
Con nitrilos la adición nucleófila puede, por ejemplo, tener lugar mediante:
R-CN + 2H2O → R-COOH + NH3
Con iminas la adición nucleófila, por ejemplo, puede ser con:
  • La adición de un alcohol para formar un uretano:
R-NCO + R'OH → R-NHCOOR'

Adición nucleófila a enlace multiple carbono-carbono

Para que pueda tener lugar una adición nucleófila sobre un doble enlace, típicamente nucleófilo, éste debe tener un sustituyente aceptor de electrones por resonancia, tal como un acilo, que lo haga susceptible de recibir el ataque de un nucleófilo al verse empobrecido electrónicamente (carácter electrófilo). Este es el caso de las adiciones conjugadas, como lo es la reacción de Michael.
En la sustitución nucleófila aromática vía bencino, anillo tensionado, se produce una adición nucleófila sobre un triple enlace.

REFRENCIAS:
  1. Strategic Applications of Named Reactions in Organic Synthesis Laszlo Kurti, Barbara Czako Academic Press (March 4, 2005) ISBN 0-12-429785-4
  2. Analysis of the reactions used for the preparation of drug candidate molecules John S. Carey, David Laffan, Colin Thomson and Mike T. Williams Org. Biomol. Chem., 2006, 4, 2337 - 2347, doi 10.1039/b602413k
  3. Is This Reaction a Substitution, Oxidation-Reduction, or Transfer? / N.S.Imyanitov. J. Chem. Educ. 1993, 70(1), 14 – 16.